Package: glmnet 4.1-8
glmnet: Lasso and Elastic-Net Regularized Generalized Linear Models
Extremely efficient procedures for fitting the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, Poisson regression, Cox model, multiple-response Gaussian, and the grouped multinomial regression; see <doi:10.18637/jss.v033.i01> and <doi:10.18637/jss.v039.i05>. There are two new and important additions. The family argument can be a GLM family object, which opens the door to any programmed family (<doi:10.18637/jss.v106.i01>). This comes with a modest computational cost, so when the built-in families suffice, they should be used instead. The other novelty is the relax option, which refits each of the active sets in the path unpenalized. The algorithm uses cyclical coordinate descent in a path-wise fashion, as described in the papers cited.
Authors:
glmnet_4.1-8.tar.gz
glmnet_4.1-8.zip(r-4.5)glmnet_4.1-8.zip(r-4.4)glmnet_4.1-8.zip(r-4.3)
glmnet_4.1-8.tgz(r-4.4-x86_64)glmnet_4.1-8.tgz(r-4.4-arm64)glmnet_4.1-8.tgz(r-4.3-x86_64)glmnet_4.1-8.tgz(r-4.3-arm64)
glmnet_4.1-8.tar.gz(r-4.5-noble)glmnet_4.1-8.tar.gz(r-4.4-noble)
glmnet_4.1-8.tgz(r-4.4-emscripten)glmnet_4.1-8.tgz(r-4.3-emscripten)
glmnet.pdf |glmnet.html✨
glmnet/json (API)
NEWS
# Install 'glmnet' in R: |
install.packages('glmnet', repos = c('https://trevorhastie.r-universe.dev', 'https://cloud.r-project.org')) |
- BinomialExample - Synthetic dataset with binary response
- CoxExample - Synthetic dataset with right-censored survival response
- MultiGaussianExample - Synthetic dataset with multiple Gaussian responses
- MultinomialExample - Synthetic dataset with multinomial response
- PoissonExample - Synthetic dataset with count response
- QuickStartExample - Synthetic dataset with Gaussian response
- SparseExample - Synthetic dataset with sparse design matrix
- beta_CVX - Simulated data for the glmnet vignette
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 1 years agofrom:625f6ca6e3. Checks:OK: 1 WARNING: 8. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 14 2024 |
R-4.5-win-x86_64 | WARNING | Nov 14 2024 |
R-4.5-linux-x86_64 | WARNING | Nov 14 2024 |
R-4.4-win-x86_64 | WARNING | Nov 14 2024 |
R-4.4-mac-x86_64 | WARNING | Nov 14 2024 |
R-4.4-mac-aarch64 | WARNING | Nov 14 2024 |
R-4.3-win-x86_64 | WARNING | Nov 14 2024 |
R-4.3-mac-x86_64 | WARNING | Nov 14 2024 |
R-4.3-mac-aarch64 | WARNING | Nov 14 2024 |
Exports:assess.glmnetbigGlmbuildPredmatCindexcoef.glmnetcoef.relaxedconfusion.glmnetcoxgradcoxnet.deviancecv.glmnetglmnetglmnet.controlglmnet.measuresmakeXna_sparse_fixna.replacepredict.glmnetpredict.relaxedprepareXprint.cv.glmnetrelax.glmnetrmultroc.glmnetstratifySurv
Dependencies:codetoolsforeachiteratorslatticeMatrixRcppRcppEigenshapesurvival
An Introduction to glmnet
Rendered fromglmnet.Rmd
usingknitr::rmarkdown
on Nov 14 2024.Last update: 2023-08-22
Started: 2019-11-09
Regularized Cox Regression
Rendered fromCoxnet.Rmd
usingknitr::rmarkdown
on Nov 14 2024.Last update: 2021-06-24
Started: 2019-11-09
The family Argument for glmnet
Rendered fromglmnetFamily.Rmd
usingknitr::rmarkdown
on Nov 14 2024.Last update: 2021-01-11
Started: 2020-05-14
The Relaxed Lasso
Rendered fromrelax.Rmd
usingknitr::rmarkdown
on Nov 14 2024.Last update: 2021-06-24
Started: 2019-11-09